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NIST Outline of Talk

e The Problem Statement

 The Main Sources of Variability Affecting CPU Time
Requirements of an Active Application

 Modeling Active Network Nodes and Active Applications
— Active Network Node Model
— Active Application Model
— Active Application Model Transforms

o Calibrating Active Network Nodes

* Generating Active Application Models

* Proof-of-Concept Results

» Potential Benefits of Success

 Future Work
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NIST The Problem Statement

How can one express the CPU time requirements of an Active
Application in aform that can be meaningfully interpreted among
heterogeneous nodes in an Active Network?

* In current network switches and routers, well-known, system-independent
metrics exist for two resources: bandwidth (bits per second) and memory
(bytes or byte/seconds). What about CPU cycles?

» Currently, per-packet processing requirements in a network node are fairly
homogeneous — Active Networks will change that situation.

* S0 an accepted, system-independent means of expressing CPU time

requirements will be needed to enable allocation and management of
CPU cycles among active network nodes.
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NIST

A Conceptual Model of an Active Node
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(Channels) Timer Services M anagement
Network Device Drivers (Threads) Services
(Flows, Thread Pools,
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Node Hardware

Helps to identify the sources of variability affecting
CPU time reguirements in an Active Application.
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NIST Five Main Sources of Variability

Any effective metric for CPU time usage in an Active Network Node
must account for five main sources of variability:

1. Raw Performance of Node Hardware

2. Specific EE in which AA executes, along with the
mapping of the EE virtual machine to the node hardware

3. Mapping of Node OS system callsto real system callsin
the host operating system

4. Implementation of real system calls within the host
operating system, including the selection of specific
protocol modules to implement each instance of a Node
OS channel

5. Behavior of the AA itself
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NIST Proposed Three-Part Model for
Active Network Nodes and Active Applications

e Active Network Node Model

(accounts for first four sources of variability)

e Active Application Model

(accounts for fifth source of variability)
* Active Application Model Transforms

Each of these is explained in the next few slides.
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NIST Active Network Node Modél

Example for Two Nodes (Node A and B)
» Performance of the local node
Node A: Execution Environment Vectors and of a reference node with
e _f;;s _7E5§25 _:2'233 respect to a benchmark
EE o8 s 78S P workload for each EE
EE?:;n_CE/EEmdeA_ 2 2.005291 1.86285714
Node A: Node OS Call Vectors » Ratio of reference node to
s, s s, s, local node performance for
S erence .0054 ms .0109 ms .0012 ms 0075 ms each EE benchmark
= —_— .0108 ms .0179 ms .0036 ms .0167 ms
Srterencd Shoaen > ol — o « Performance of the local node
) ) and of a reference node with
Node B: ExecutlonEElnvwonmentE E\Z/ectors = respect to a benchmark
= Je6 e P workload for each Node OS
EE, s .052s 084 s .033s call
EE, e encd/ EE noges 8.77 9.02 .88 _
» Ratio of reference node to
Node B: Node OS Call Vectors local node performance for
=1 > > > each Node OS call
S eference .0054 ms .0109 ms .0012 ms .0075 ms
S .0045 ms .0099 ms .0009 ms .0069 ms Node B is about
S eterence Shoges 12 11 1.33 1.09 B5x faster 7




NIST Active Application Model

Semi-Markov Modd

Semi-Markov M odel chosen as a first coarse
approximation of a more complex reality. M easur ement
data will tell thereal story — leading us to revise this
model as necessary.

November 1, 1999

» States denote AA calls
to Node OS

e Transitions denote AA
execution within EE

o Idle (Red) state denotes
beginning and end of an
AA execution thread

e T's are CPU times attached
to states and transitions

* P’s are probabilities of each
transition



NIST Active Application Model (in Matrix Form)

Node OS Call
State Vector Execution Environment Trangtion Matrix
SystemCall CPU Time S S S S S,
P P P P
Idle S) DD L-s1 ) -3 Pg.an
S) Tow Tos Tos Tos * *° Tosn
Pq,. Pq,. Pq. Pq,.
Sl TSl Sl TSL 0 TSL st TSL 2 TSL 3 . o o Pe.am
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% T < Sz isz-so isz-m isz-sz isz-sa . o o Pso.an
-2 -8l - -3 Toan
P P P P
T B0 3-8l 3 B3 Ps.an
% =3 33 Tse Tsa Ts:ausz Tss * *° Teaan
P P P P
Sm TSmm Sm snSo smsL M ams3 . o o Panam
Tano Tons Tane Tons Tanan
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NIST How might aNode OS use an
Active Application Model ?

* We can pool all states in the AA model beyond Idle (S0O) into one composite
state (SA), creating a two-state Markov chain.

o If we assume that this chain is stationary, then the distribution of measured dwell
time in each state will be exponential.

» Given this assumption, the time to leave state SO and SA can be written:

P(e>t) =e*(-A%) (Timetoleave S0)
P(T >t)=e**(-At) (Timetoleave SA) - where each Xj represents the

Z bl observed average dwell timein one
i=1

Thedistribution of average dwell timesin SA is of the component states aggregated
AO=1/T, where T can be computed as: " together to form SA.

The distribution of average dwell times can be partitioned into two parts a and 1-a, where each partition represents
aregion in which some proportion of the dwell timesin SA fall. Since for an exponential distribution
a = eMg, t, denotesavalue above which o percent of the observations will be found. t, can be found as follows.

A*t,=-loga

t, =-(1/A*) log a
Thisequation leadsto an easily
Substituting /T for A*:t, =-Tloga  computable threshold value.
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NIST  Example: Consider the Following Model for an

AA Executing on an Active Network Node A
AA Model for Node A

Node OS Call State Execution Environment Transition Matrix
Vector
?;ﬁem CPU Time ToS, ToS ToS, ToS, ToS,
S 0.0000 From S, 0]0] .8[1234 .2|457 olo 0](0]
S 0.0114 From S, .05]2345 .6|347 .25|423 .1|256 0](0]
S, 0.0165 From S, .25|337 .15[1115 2|313 .2|109 2|92
S, 0.0280 From S, .01]1632 .55|756 .04|577 .3/188 .1[89

Distribution of CPU Time Usage

1 ’L’_'_,_,_J_,_,-f—— T T

Cumulative Distribution Function and
Probability Density Function computed from
AA Model above using equations covered on
4 preceding dlide. (A[J=0.0031)

o5t o9t 7 Theexpected CPU timeto execute the AA on
ol g 4 NodeA is ~322 ms, while 95 percent of all
executions should require <= 965 ms of CPU
time and 99 per cent of all executions should
require <= 1.483 seconds of CPU time.
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NIST Application Model Transforms:
Node-to-Reference (NR) Transform

Node to Refer ence Transfor mation

n := theindex for the specific execution environment used for the
application
m :=the number of system calls supported by a NodeOS

for i fromOtom

SCv_ector[i] .= Sreference[i]/snode[i] * SCvector[i]
for j fromOtom

EE,...[ii].T :=EE

[N)/EE,  qelN] * EE iixlld]- T

reference

end for
end for
AA Mode for Reference Node and for Transmission on the Network
Node OS Call State Execution Environment Transition Matrix
Vector

System Call CPU Time ToS, ToS, ToS, ToS, Tos,
S, 0.0000 From S, 0j0 82468 2|914 0j0 olo
S, 0.0057 From S, .05}4690 6694 .25|846 AJ512 0j0
S, 0.0101 From S, 225|674 152230 2|626 2|218 2|184
S, 0.0092 From S, .01[3264 55[1512 .04[1154 3|376 1178
S, 0.0071 FromS, 67042 .1]1964 2|690 .05|690 .05]214
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NIST Application Model Transforms:
Reference-to-Node (RN) Transform

Refer ence to Node Transfor mation

n:= theindex for the specific execution environment used for the

application
m := the number of system calls supported by a NodeOS

for i fromOtom

SCv_ector[i] = Snode[i]/Sreference[i] * SCvector[i]
for j fromOtom

EEmatrix[i'j]'T = EEnode[n]/EEreference[n] * EEmatrix[i’j]'T
end for
end for
AA Model for Node B
Node OS Call State Execution Environment Transition Matrix
Vector

System Call CPU Time To SO To Sl To SZ To % To 84
S 0.0000 From S, 0[0 .8|281 .2|104 0[0 0[0
S, 0.0047 From S, .05|535 6|79 .25|96 1|58 olo
S 0.0092 From S, 25|77 15254 271 2|25 221
S 0.0069 From S, .01)372 55172 .04|132 343 .1]20
S, 0.0065 From S, .6/803 [224 2[79 .05|79 .05]24
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NIST
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Recalculating CPU Time Requirements for the
AA on Active Network Node B

Distribution of CPU Time Usage

I I I /L'F,,_,_,Lﬂ—'—-r T I
95“’1 99“’1
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(220 ms) (338 ms)
! ! I ! | 1
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CPU Time

Cumulative Distribution Function
and Probability Density Function
computed from AA Model using
figuresfrom the preceding dide.
(A=0.0136)

The expected CPU time to execute
the AA on Node B is ~73 ms, while
95 per cent of all executions should
require <= 220 msof CPU time and
99 per cent of all executions should
require <= 338 msof CPU time.

The AA executes on Node B about 5x faster than on Node A.
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ST Determining Models for
N Active Nodes and Applications

e How can Active Nodes be calibrated?

« How can Active Application models be generated?

Each of these topics is discussed in the next few slides.
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A Taxonomy of Selected Existing
Computer Performance Benchmarks

NIST

Benchmarks

/ \Real

Synthetic
/ \ Hybrld
Static Dynamic Dynamic Dynamic
» Composite
Theoretical
Performance : : :
(MTOPS) | Single- || Multi- o Single- Multi- Single-
Thread || Thread aptive | | Thread Thread Thread

* Dhrystones MemStone < Wintune98 « WinBench99 « WinStone99 » SPEC95

(MIPS) «TPC-AB,C,D (with CPUmark99) * NetBench 6.0  « SYSmark98
» Whetstone * WebBench 3.0
(MFLOPS) * SPECweb96
* BizStone
» GraphStone
* ThinkStone
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NIST Calibrating Active Network Nodes

» Possible approachesto defining benchmark workloads for Active Nodes
— Usereal Active Applicationsto construct a workload for each EE

— Userepresentative applicationsthat behave as we expect major classes of AAs to
behave

— Use asynthetic benchmark that repeatedly exercises all functions in an EE

— Use ahybrid approach

— Benchmark only a reference node and then use a static calculation (e.g., MTOPS) to
estimate performance on other nodes

 Node OScall calibration can be done with a synthetic benchmark program
that repeatedly exer cises each system call

« When and how to run the calibration wor kloads?

— Off-line (needs no run-time resources, but might lag system configuration changes)

— Boot-time (needs no run-time resources and will catch many configuration changes,
but could lengthen the boot process substantially and may not work well with future
dynamic operating systems)

— Off-linewith Run-time Adjustments (advantages of off-line and should also catch
configuration changes with some lag time, but will incur execution overhead and
might be difficult to design and implement)
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NIST Generating Active Application Models

During testing process an AA is run through many execution paths— an
execution trace can be generated in a form similar to the following:

<SC> <SCj> <SCT;> <EETi,j> <CPUi,j>

Where each linerepresents atransition between two Node OS system calls, and

<SC> is a unique integer number assigned to identify the "from"
NodeOS system call,
<8C;> ISsa uniqueinteger number assigned to identify the" to" NodeOS system call,
<SCT;>isthe CPU time spent while executing the " from" system call,
<EET, ;> isthe CPU time spent while executing in the EE between <SC.> and <SC;>,
and
<CPU;, ;> istotal of <SCT > + <EET, ;>.

A program can be written to automatically generate an AA
Model (in vector and matrix form) from such atrace.
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NIST Proof-of-Concept: Trace Generation

* Modified Linux kernel to generate CPU usage execution
traces with minimal measurement overhead

— Retrieve CPU time used by EE process when entering and
exiting each system call, including the scheduler, and write a
trace log event

— Needed to use special Pentium instructionsto grab CPU time
In nanosecond granularity for measuring system calls

» Generated CPU usage execution traces for several AAs In
the ANTS EE running on top of Linux
— Ping, Auction, Multicast, and TCP denial-of-service defense
— Ran a number of execution scenarios for each application

 An example follows
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NIST Proof-of-Concept: An Example

Scenario 1. Intermediate Node Gets Ping Request with No Code Available

LAN
Ping Req. Ping Req.
ANTS Ping > ANTS Ping > ANTS Ping
EE AA < Get Code EE AA Get Code EE AA
<
Unmodified ping Code Linux kernel (with ping Code Unmodified
Linux kernel > M easurement M ods) > Solariskerne
Role  Sender Pentium I 333 MHz 64 MBs Role  Target
Role: l Router
CPU Usage Execution
Traces

Scenario 2: Intermediate Node Gets Ping Request with Code Available
Scenario 3: Ping as Source Node with Intermediate Node Needing Code
Scenario 4: Ping as Source Node with Intermediate Node Having Code
Scenario 5: Target of Ping but Needing Code

Scenario 6: Target of Ping but Having Code

Scenario n: According to Application Test Plan
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ST Proof-of-Concept: Results
N Initial First-Return Times for ANTS Ping

DISTRIBUTIONAL ANALYSIS OF FIRST RETURN TIMES

40 40000000 , , ,
LAMBDA = 19795870 , i i
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30 30000000 = - P < - - - SEEERE SRR R
i i i i fﬁ
> Z Z Z Z 3
&) >
P4 il il il il (6]
u . | | ! N4
20 3 20000000 T -~ f-F- - R R e g
E ' ' ' ' 3
. . . . o
1 1 1 1 E.)
10 10000000 = < f - -F----- EERERE R R
0 T T T T T T T T T 0 t t t t
0 10000000 20000000 30000002 40000000 50000000 0 1 2 3 4 5
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40000000 ; ; ; 1 .. .
MEAN= 19795570 : - Distribution I ndex
STDV & 15878912 ' 0.9
300000001 - - - - me-e - 5 5 - 5 0.8 —
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Z Z Z Z Z g 0.7 3
il il il il il (8] B :
=4 - - - - [, [T P, [ Voo 2 d X _ _ — H
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S 05 8
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3 2 1 0 1 2 3 2 1 0 1 2
RESCALED GAUSSIAN PREDICTIONS DISTRIBUTION INDEX

ANTS PING SCENARIOS
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ST Proof-of-Concept: Results
N Transitions between a State Pair for ANTS Ping

DISTRIBUTIONAL ANALYSIS OF DWELL+TRANSITION TIMES

200 170000
HISTOGRAM 160000 7]
150000 |
150 E
140000 —+
130000
100 120000 +
110000 —+
100000 |
50 | :
90000
80000

0 — e 70000
0 50000 100000 150000 200000 250000 300000 0

170000

' ' ' ' '
MEAN,= 102632 ' ' '

Distribution Index

160000

...............................

PPCC PLOT _1 — Cauchy

R 0 = Gaussian

150000
140000
130000
120000
110000

100000

...................... 1=Uniform

--------------- 2 = Beta

90000 7

FROM STATE 102 TO STATE 004
ANTS PING : SCENARIO E (34 REP’S)
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IST Proof-of-Concept: Results
N Initial First-Return Times for ANTS Multicast

DISTRIBUTIONAL ANALYSIS OF FIRST RETURN TIMES

20 50000000 ; ; ; ;
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ANTS MULTICAST SCENARIOS
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Proof-of-Concept: Results
Transitions between a State Pair for ANTS Multicast

DISTRIBUTIONAL ANALYSIS OF DWELL+TRANSITION TIMES

10 400000 ; ;
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FROM STATE 106 TO STATE 106
ANTS MULTICAST : SCENARIO MA
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NIST Potential Benefits of Success

* Successful results will enable resource management systems on
heterogeneous Active Nodes to address CPU time in addition to bandwidth
and memory; nodes can enforce CPU usage contracts.

* Successful results will open new research possibilities in resource
management for Active Networks.

— Admission control decisions based on CPU, bandwidth, and memory
requirements.

— Find paths with sufficient CPU availability, while also meeting throughpuit,
delay, and jitter requirements for an Active Application.

— Query an Active Network with an Active Application’s performance
constraints and requirements for CPU time, memory, and bandwidth;
sort through multiple path proposals with associated costs to select one.

— Techniques might also apply to other mobile code systems intended for
heterogeneous nodes.
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NIST Future Work: FY 00

Task 1. Develop and evaluate an Active Application (AA)
model based on statistical analysis of AAs— let us
know about yours!

Task 2: Design and develop a Self-Calibrating Active Node

— Calibration workload for EEs and for Node OS calls
— A self-calibration mechanism and related algorithms

Task 3: Design and implement an automated Active
Application (AA) model generator

Task 4. Specify, design, and implement additional Node OS
calls required to support calibration
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NIST Future Work: FY 01

Task 5: Prototype and evaluate our components as a system:
across multiple Active Nodes, EEs, AAs, Node
operating systems.

Task 6. Update prototype based on results from the
evaluation.

Task 7: Integrate prototype with an Active Network
resource manager.

Task 8. Demonstrate the ability to enforce CPU resource
usage policy.
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